City of Pass Christian 2014 Drinking Water Report #### Is my water safe? Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HTV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Our water comes from four deep water wells that draw water from the Pascagoula Formation, approximately 900 feet below the ground surface. #### Source water assessment and its availability A Source Water Assessment has been completed by the Mississippi Department of Environmental Quality. It indicates that all four of our wells are rated as a "MODERATE" risk for future contamination by groundwater. The complete report is available for review at the Water Department Billing Office. #### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? The Pass Christian Board of Aldermen has a regularly scheduled meeting on the first and third Tuesday of each month, beginning at 6:00 PM. All customers of the Pass Christian Water System are invited to attend. This consumer confidence report will not be mailed to the customers of the water system. In accordance with MSDH regulations, customer notification of these results will be accomplished by this publication. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pass Christian is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested. #### Monitoring and reporting of compliance data violations ### *****April 1, 2013 MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING***** In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed the sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has completed the monitoring requirements and is now in compliance with the Radionuclides Rule. If you have any questions, please contact Karen Walters, Director of Compliance and Enforcement, Bureau of Public Water Supply, at (601)576.7518. In accordance with MSDH regulations, customer notification of these results will be accomplished by this publication. A copy of the CCR will not be mailed to our customers, but is available for review at the office of the Water and Sewer Operator or City Hall. ## Water Quality Data Table The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. | .Contaminants | MCLG
or
MRDLG | MCL,
TIL, or
MRDL | Your
Water | <u>R</u>
Low | mge *
≠High | — Sam
Dire | Carlo a servicia de la compansión | | |--|---------------------|-------------------------|---------------|-----------------|--|---------------|---|---| | Distilled in the Alberta | | | valus) | LUW | ************************************** | Date | Violation- | evi)leal-Source | | (There is convincing evide | 11X (A) | | sinfectant | s necessa | ry for co | ntrol of m | lcrobial con | ainthants i | | Haloacetic Acids
(HAA5) (ppb) | NA | 60 | 15.0 | NA | | 2014 | No | By-product of drinking water chlorination | | Chlorine (as Cl2) (ppm) | 4 | 4 | 1,6 | 0.80 | 3.00 | 2014 | No | Water additive used to control microbes | | TTHMs [Total
Trihalomethanes] (ppb) | NA | 80 | 1.29 | NA | | 2014 | No | By-product of drinking water disinfection | | Inorganic Contaminants | | | | | | | | | | Antimony (ppm) | NA | 0.006 | <0.0005 | NA | | 2014 | No | Discharge from petroleum refineries; fire retardants, ceramics; electronics; solder; test addition. | | Arsenic (ppm) | NA | .010 | <0.0005 | NA | | 2014 | No | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | Barium (ppm) | NA | 2 | 0.0133 | .0074 | .0133 | 2014 | No | Discharge of drilling wastes;
Discharge from metal refineries;
Erosion of natural deposits | | Beryllium (ppm) | NA | 0.004 | <0,0005 | NA | | 2014 | No | Discharge from metal refineries
and coal-burning factories;
Discharge from electrical,
aerospace, and defense industries | | Cadmium (ppm) | NA | 0.005 | <0.0005 | NA | ·········· | 2014 | No | Corrosion of galvanized pipes;
Erosion of natural deposits;
Discharge from metal refineries;
runoff from waste batteries and
paints | | Chromium (ppm) | ÑΑ | 0.1 | 0.0082 | .0031 | .0082 | 2014 | No | Discharge from steel and pulp
mills; Erosion of natural deposits | | Cyanide [as Free Cn]
(ppm) | NA | 0.2 | <0.015 | NA | | 2014 | No | Discharge from plastic and fertilizer factories; Discharge from | | Juĺ. 1. 2015_10 | : 20AM | WPSCO | Inc | | | | | No. 3899 P. 5 | |--|-----------|-----------|---------|----------|--|------|----------|---| | Fluoride (ppm) | , NA | 4 | 0.382 | 0.187 | 0.382 | 2014 | No | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Mercury [Inorganic]
(ppm) | NA | 0.002 | <0.0005 | ΝA | | 2014 | Ν̈́ο | Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland | | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | 0.08 | ŇΑ | | 2014 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Brosion of natural
deposits | | Nitrate + Nitrite [measured as Nitrogen] (ppm) | 10 | 10 | 0.1 | NA | | 2014 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | Nitrite [measured as
Nitrogen] (ppm) | 1 | 1 | 0.02 | NA | 0.05 | 2014 | No . | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | Selenium (ppm) | ŇA | 0.05 | <0.0025 | ŇΑ | | 2014 | No | Discharge from petroleum and
metal refineries; Brosion of natural
deposits; Discharge from mines | | Thallium (ppm) | NA | 0.002 | <0.0005 | ÑΑ | | 2014 | Ν̈́ο | Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories | | Volatile Organic Contami | inants | | | | Comment of the commen | | | | | 1,1,1-Trichloroethane
(ppb) | 200 | 200 | <0.5 | NA | | 2014 | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane (ppb) | 3 | 5 | <0,5 | NA | | 2014 | No | Discharge from industrial chemical factories | | l,l-Dichloroethylene
(ppb) | 7 | 7 | <0.5 | NA | | 2014 | No | Discharge from industrial chemical factories | | 1,2,4-Trichlorobenzene
(ppb) | 70 | 70 | <0.5 | ŇA | | 2014 | No | Discharge from textile-finishing factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | <0.5 | ŇA | W. 117 | 2014 | No | Discharge from industrial chemical factories | | 1,2-Dichloropropane
(ppb) | 0 | 5 | <0.5 | ÑΑ | | 2014 | No | Discharge from industrial chemical factories | | Benzene (ppb) | 0 | 5 | <0.5 | ÑA | | 2014 | No | Discharge from factories;
Leaching from gas storage tanks
and landfills | | Carbon Tetrachloride (ppb) | 0 | 5 | <0.5 | ÑΑ | | 2014 | Ν̈́ο | Discharge from chemical plants and other industrial activities | | cis-1,2-Dichloroethylene
(ppb) | 70 | 70 | <0.5 | ΝA | | 2014 | No | Discharge from industrial chemical factories | | Dichloromethane (ppb) | 0 | 5 | <0.5 | NA | | 2014 | No | Discharge from pharmaceutical and chemical factories | | Ethylbenzene (ppb) | 700 | 700 | <0.5 | NA | | 2014 | No | Discharge from petroleum refineries | | o-Dichlorobenzene (ppb) | 600 | 600 | <0.5 | NA | | 2014 | No | Discharge from industrial chemical factories | | | | | | | | | | | | p-Dichlorobenzene (ppb) Chlorobenzene (ppb) | 75
100 | 75
100 | <0.5 | NA
NA | | 2014 | No
No | Discharge from industrial chemical factories Discharge from industrial | | Styrene (ppb) | 100 | 100 | <0.5 | NA | 2014 | No | Discharge from rubber and plastic factories; Leaching from landfills | |---------------------------------------|-------|-------|------|----|------|----|---| | Tetrachloroethylene
(ppb) | 0 | 5 | <0.5 | NA | 2014 | No | Discharge from factories and dry cleaners | | Toluene (ppb) | 1000 | 1000 | <0.5 | NA | 2014 | No | Discharge from petroleum
factories | | trans-1,2-
Dicholoroethylene (ppb) | 100 | 100 | <0.5 | NA | 2014 | Nо | Discharge from industrial chemical factories | | Tricilloroethylene (ppb) | 0 | 5 | <0.5 | NA | 2014 | No | Discharge from metal degreasing sites and other factories | | Vinyl Chloride (ppb) | 0 | 2 | <0.5 | NA | 2014 | No | Leaching from PVC piping;
Discharge from plastics factories | | Xylenes (ppm) | 10000 | 10000 | <0.5 | NA | 2014 | No | Discharge from petroleum factories; Discharge from chemical factories | | (Containlinus
Invegants Contaminuus | ALC: UNITED AND THE STATE OF TH | | | Date: | #Samples
Exceeding AL | AL | Typical Source | |--|--|-----|-----|-------|--------------------------|----|--| | Copper - action level at consumer taps (ppm) | 1,3 | 1.3 | 0.3 | 2007 | 0 | No | Corrosion of household plumbing systems; Brosion of natural deposits | | Lead - action level at consumer taps (ppb) | 0 | 15 | 3 | 2007 | 0 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Contaminants | MCL | Yout
AL Water | Sample —
Date | a#Samples
Exceeding AI | Exceeds Eypli | яl-Source | |--|-----|------------------|--|---------------------------------------|---------------|-------------------------| | | | | 144 A State of the | · · · · · · · · · · · · · · · · · · · | | Cyritalistic III III II | | Combined Uranium (ppb) | 30 | 0.5 | 9/2013 | 0 | No | | | Combined Uranium (ppb) | 30 | 0.5 | 9/2013 | 0 | No | <u> </u> | | Radium - 226 (PCI/L) | NA | <0.407 | 9/2013 | 0 | No | | | Radium - 226 (PCI/L) | NA | <0.42 | 9/2013 | 0 | No | | | Radium - 228 (PCI/L) | ÑΑ | <0.58 | 9/2013 | 0 | No | | | Radium - 228 (PCI/L) | ÑΑ | <0.287 | 9/2013 | 0 | No | | | Gross Alpha Particle
Activity (PCI/L) | 15 | 0.4 | 9/2013 | 0 | No | | | Gross Alpha Particle
Activity (PCI/L) | 15 | 1.0 | 9/2013 | 0 | No | | | Unit Descriptions | | |-------------------|--| | <u>Term</u> | Definition | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | PIC/L | Picocuries per liter | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Important Drinking Water Defi | ollion; | |-------------------------------|---| | Term | Definition | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | ΥΥ | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions, | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDĽ | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | For more information please contact; Bruce Anthony Address: 397 Clark Avenue Pass Christian, MS 39571 228-452-2031